![]() |
The Babes of Science: Marilyn, Pan Conrad, Liane Benning |
Since the emergence of the field of
astrobiology in the late 1990s, fundamental questions still persist even today.
What are the basic characteristics of life? How do we recognize life if it does
not resemble any known life forms on Earth? These questions have been long
debated by National Research Council committees, NAI teams, and numerous panels
of distinguished scientists. Living organisms are essentially never in static
equilibrium with the environment. They exist in steady state, maintaining a
balance between growth and decay, or actively growing. An environment that is
neither too hot nor too cold where complex molecules can exist without being
vaporized or frozen is needed to sustain life. That environment should have a
liquid, presumably water, to enable biological reactions. Finally, there needs
to be some system for allowing for evolution.
In 2000, I helped organize a workshop
sponsored by the National Research Council and we wrote the following:
“We make
the assumption that if life exists on other planets or moons, it will be carbon
based and dependent on liquid water...Carbon is the best element for creating
macromolecules; it can form chemical bonds with many other atoms to produce
biochemical complexity. All life on Earth evolved from a single type of cell,
referred to as the last common ancestor, and thus shares the same genetic code
and central biochemistry. Extraterrestrial life could be so different from life
on Earth that modern methods would fail to detect it.”
Our challenge was to find evidence of
life in the most extreme, seemingly barren places here on Earth. We
astrobiologists were on the search for life as we don’t know it. My efforts
started with the AMASE expeditions, beginning in 2002, with Hans Amundsen and
Bjorn Jamtveit of the University of Oslo as leaders. They had assembled an
international team of scientists and expedition artists for a voyage to the northern
islands of the Svalbard Archipelago. Svalbard, covered with ice sheets and
glaciers, is located at about 80° north latitude, the same latitude as northern
Greenland. Northern Svalbard is an Arctic desert, which was one of the
principal Mars analogue traits important to our studies. It is
serviced by flights into the major town of Longyearbyen, a combination frontier
and tourist destination visited in summer by people from around the world. Like
Mars, Svalbard is cold, dry, and virtually devoid of biomass---with exposed
rock formations, as well as thermal springs and dormant volcanoes,
all-important characteristics for our study.
My Geophysical Laboratory colleague
Steelie and his student Maia Schweitzer were invited on the 2003 trip. Steele
was a novice field scientist, having worked primarily in the lab on
experimental studies. Steele and Schweitzer brought back interesting microbial
samples and rocks from Svalbard volcanoes to examine for traces of microbial
life and organic carbon concentrations.
In the laboratory, I began to engage in
the analyses of those samples finding small amounts of carbon and nitrogen in rare
rocks called xenoliths—“strange” rocks from deep within the Earth’s mantle tens
of kilometers underground. The 2003 team also brought back special carbonate
samples, some of which were precipitated under glacially cold conditions. I
measured the isotope patterns in these rocks giving the AMASE researchers
information they wanted. Hans Amundsen visited the Geophysical Laboratory in
December that year and learned that I had a viewpoint that had not yet been
considered. Not only were stable isotopes key for all the samples we collected,
but also, as a biogeochemist and geo-ecologist, I could bring a different
perspective to sampling a Mars-analog site. I was therefore invited to
participate in the AMASE 2004 expedition the following summer.
The Geophysical Laboratory group in
2004 consisted of Andrew Steele, Maia Schweitzer, Jan Toporski and Jake Maule
(Steele’s postdocs), Verena Starke (Steele’s graduate student), and me. The
Director of the Geophysical Laboratory Wes Huntress, former NASA Associate
Director and champion of the Astrobiology program, provided special support for
us to participate in the expedition. We took with us to Svalbard numerous small
items of equipment to measure nutrients and find bacteria in the field. We
brought boxes of 50 ml plastic test tubes, sterile sampling gear, rock bags, chemical
reagents, and rock hammers. Our personal duffle bags were full of winter
clothes, hiking boots, thick socks, down jackets, and long underwear. Our
departure from Dulles International Airport was complex because of extra bags and
the remote destination in Svalbard. Miraculously, we all arrived in
Longyearbyen with our scientific and personal gear ready to meet other AMASE
participants and train for the voyage to our field sites.
For most of my
life, I abhorred cold weather. The thought of heading to one of the coldest
regions of the Earth was something that had never appealed to me. Summers in
the high Arctic can be very pleasant, however, depending on the year, with
daytime temperatures requiring only a light jacket. Alternatively, a freak
snowstorm can blow in, plummeting temperatures far below zero. In 2004, by the
time I left for Svalbard at 80° North latitude, I was very excited to be
immersed in this cold, remote landscape. I couldn’t wait to board our ship, the
M/V Polarsyssel, and head out to the gray Arctic Ocean.
After arriving in Longyearbyen, we
settled into the local hostel, tested our equipment, purchased more
Arctic-worthy gear, and learned about rifles and polar bears. Polar bears are
the top carnivores in the Arctic. Typically, these bears spend much of their
time on the ice pack hunting seals, but in the summer, when the ice pack melts,
the bears move onto land, give birth to their cubs, and do most of their
hunting near shore. Polar bears are a protected and endangered species for a
number of reasons, but polar bears and humans should not mix. The AMASE team went
to the University Centre in Svalbard (UNIS) rifle range to learn how to protect
our fellow scientists and ourselves if we did have a close encounter with a
bear. Fortunately, I grew up with a father who was a hunter and taught me how
to shoot a rifle, albeit a rather small one, at targets. The rifles we had in
Svalbard were German Mausers, comparable to 30-06 rifles in the United States.
They were heavy and manually operated; automatic weapons are banned in Norway.
We learned loading and unloading of ammunition first, then the three positions
for firing.
Our group of about 15 was splayed out
on our stomachs, the first shooting position we learned. The rifles had a
substantial kick to them, and it took a steady hand to control the rifle as the
shot was fired. We each fired off a round of 4 bullets at the target, learned
to carefully check our weapon to see if it was emptied of bullets, and laid
down the guns. Our trainers checked the targets. I hit mine every time--not in
the center, but in a respectable area that may have been lethal. Our second
position was kneeling, which required greater control of the heavy rifle, but
improved our ability to aim it properly. Finally, we learned to fire the rifle
standing up, the most comfortable pose, but also requiring attention to detail
and a strong stance. My aim was decent and I passed the test to be able to
defend myself and others from polar bears. Of course, we all hoped we would
never have to actually fire the gun at a bear.
We departed from Longyearbyen about a
week after arriving in Svalbard. Our vessel in 2003-2005 was the M/V
Polarsyssel, an icebreaker once owned by the Governor of Svalbard, and now
available for hire. It was an older ship, not fitted out for scientific study. Our
“laboratories” were set up down in the cargo bay area in tiny rooms about 2
meters by 2 meters. I had the luxury of sharing my lab space only with
Steelie’s student Verena, but Steelie and his other colleagues—most of them
very large men—were crammed into a similarly sized space. Our cabins where we
slept were on the next floor up with two of us to a room and very comfortable.
Verena and I also shared a cabin, which was kept extremely neat according to
her German nature. I couldn’t say the same for cabins shared by the men. Hans’
stateroom was on the upper deck with a living room, en suite bathroom, and
separate sleeping quarters. There was a common room on the level with the
galley and the mess area where we met to discuss our daily plans. Outside, the
back deck was designed as a helicopter-landing pad, which we used for changing
our scientific crew midway through the expedition.
![]() |
Heli-deck on the Polarsyssel |
Once we came aboard the ship and unloaded
our gear, we underwent our next training on how to don survival suits and learn
“man overboard” drills. The bulky orange suits made us feel like monsters, and
we laughed as we put the giant Norwegian sized suits on and hopped around the
deck of the ship. When at our field sites, we wore these suits as we traveled
to shore in zodiac boats. In ten years of AMASE expeditions, we never had a
serious safety issue in the field.
Leaving the Longyearbyen harbor—and
civilization—always brought everyone on deck and a tingling sense of adventure.
We left behind the hotels, restaurants, and tourists bound for isolation and
adventure! The passage north to our field areas took about a day and a half,
often in fairly rough seas. The voyage gave us time to set up our labs, get
used to shipboard life, and plan our first Arctic explorations.
![]() |
Leaving Longyearbyen harbor |
By
far, one of my favorite places on Earth is Bocfjorden with the view of Sverrefjellet
volcano towering over the fjord. A mountain is an ecosystem unto itself. Its
northern flanks host more cold tolerant organisms. The southern flanks are
drier, as are the higher elevations. Over the years, I made multiple trips up
its flanks and down into its gullies. The feeling of being on top of the world
is strong everywhere on the volcano, not just the summit. Wherever I turned, I
saw new plants, encrusted lichens, interesting rocks, all of which opened up
new ideas for searching for life on the planet Mars. What to collect, label and
store in my backpack was nearly an overwhelming challenge. At the end of a
foray on Sverefjellet volcano, I would sit on the deck of the ship with a beer,
realize how small I am, and strategize how to understand and sample its most
interesting features.
Over
the years, I sampled ice caves, Martian-like carbonate globules, a full suite
of Arctic plants, soils, dozens of xenoliths, polar bear poop, bones, feathers,
lichens, and mosses. Svalbard’s ecosystems were too vast for me to collect everything
I was interested in. I had to be satisfied with what I could sample in this
wild terrain. It was the first mountain system that I’d studied, and I learned
a tremendous amount including the basics of mountaineering. Not only did I
previously avoid cold weather, I was slightly afraid of heights. As I hiked up
the mountain, which had no established paths or trails, I instinctually hugged
the ground, and consequently slid backwards in especially steep areas. Hans
Amundsen watched, and gently suggested that I try standing up straight, letting
gravity keep me upright. It worked, but required mental energy to do something
that felt “wrong.” Eventually, I could make it to the top without falling. Coming
down was another matter.
![]() |
My favorite volcano--Sverrefjellet, 2004 |
I
planned to sample plants, soils, and rocks every 50 meters from the top to the
lower flanks. With a team of five colleagues, we headed downwards. The first
several stops were flawless—the team collected, bagged and described specimens.
About 150 meters down on one of the steepest slopes, we passed over a patch of
ice covering a talus slope with small volcanic rocks. I slid, fell forward, did
a complete 360° flip and landed on my backpack, sliding 15 meters downwards. My
team members were open-mouthed, shocked. Because of my thick warm clothing and
pack, I landed without injury, but I was shaking, grateful to be without injury.
It took a few minutes, then I called this was a sample “station” and collected specimens
on my rear end.
The 2004 field season
determined largely how the team would expand and contract into the future. Hans
Amundsen, a descendent of the famous Norwegian explorer Roald Amundsen, is a
tall, blonde, commanding figure with a penchant for charging up mountains,
whacking rocks with a huge hammer called “Thor,” and uproarious laughter. It
was his vision and persistence that got AMASE started and rolling for ten
years. AMASE expeditions always included strong European and United States
components, a mix of scientists and engineers, field and lab enthusiasts, and a
blend of senior and more junior scientists. In addition, Hans always included
safety personnel and often invited media (e.g., television, radio, newspaper)
folks along to document the trips. We were joined by Kjell Ove Storvik, the
expedition photographer with many years of experience working in the Arctic
with novices. Ivar Mitkandal, then a graduate student at the University of
Oslo, was raised in the Norwegian mountains, was a hunter, and provided not
only sage advice on safety, but also great insight into the geology.
![]() |
Hans sampling the Ice Cave, 2004 |
Our primary goal was to characterize the
environment in terms of what a Mars analogue site should look like. From the
geologists’ perspective, easy access to rocks from all ages and
types--Precambrian to modern sediments, and volcanic, mantle rocks to
sedimentary rock strata---was a strong positive reason for choosing Svalbard as
a field area. Specific locations were primarily selected in terms of the type
of geological outcrops we could readily sample. From the ecologist’s
perspective, fewer than 200 plant species occur on these islands. All of them
need to reproduce and grow in a very short summer. Animal life was limited to
abundant seabird breeding colonies and migratory shorebirds. A few land birds
(e.g., ptarmigan and Snow Bunting) occupy Svalbard year-round. Soils were
typically only a few centimeters deep. In some places, there was only bare rock.
Our daily 24-hour routine
The
sun never sets in Svalbard in summer. It travels in a 24-hour circle in the sky
not quite reaching directly above and of course, never dipping below the
horizon. The 24-hour daylight was good for long working days, but the AMASE
scientific team had a tendency to stay up to all hours of the night--3 or 4
a.m.--then have difficulty arising for the 7:30 a.m. breakfast call. I was
usually one of the first of the scientific team to wake up and go to the mess
hall for a cup of coffee. This was a quiet time to chat with the crew, the
cook, and the captain. I would wander into my “lab,” maybe finish off an
analysis or two, and then see who had come for breakfast. Often it was only one
or two others.
I became the unofficial “alarm clock”,
knocking on all stateroom doors, opening them up a few inches, and shouting,
“Get your ass out of bed!”
I wrote
some lyrics sung to the tune of The Star Spangled Banner:
“Get your
ass out of bed,
or you’ll
wish you were dead,
cause
what’s coming up next
is Morton
upside your head!”
Morton, a senior deck hand, is a giant,
strong, irreverent Norwegian man well over 6.5 feet tall. On our first trip
with him, he thought we were a bunch of sissies. When he took us ashore in the
zodiac boat, he made a point of ramming it hard onto the shoreline. He
delighted in picking us up and squeezing us in uncomfortable bear hugs. When
our voyage was over and we were back in Longyearbyen, Morton consumed many
shots of aquavit and sought us out for “loving” torture. We’d worn down that
brusque behavior, and by the second year, he welcomed us as eagerly as we
welcomed him with gusto. On our third voyage together, I treated his injured,
infected toe in my role as Chief Scientist and First Aid provider. When the
captain heard of this, he was puzzled why a scientist would treat a crewmember.
He eventually learned that on AMASE, we were one big Arctic family.
Breakfast consisted of a spread of
Norwegian cold cuts (meats), rather bland cheese including geetoast--a molasses
colored sweet cheese spread, blood sausages (delicious), tomatoes, cucumbers,
and occasionally fried eggs. At every meal, we were presented with smoked fish
products in bowls or in tooth paste-like tubes that you squeezed onto thin,
unsalted crackers. There was always bread, jams, and peanut butter to supplement
the meal. As the AMASE team straggled in, the level of conversation grew with
excitement for the field day ahead.
A small management team of Hans,
Steelie, Liane Benning, Pan Conrad (JPL scientist), and I met briefly at 8:30
am, often on the ship’s bridge to coordinate with the crew. Liane, Pan, and I
were known as the “Babes of Science” and over the years we inducted other women
into our small, but important group. Hans and Steelie were wise enough to
realize they needed a few extra people to bounce ideas off of. Liane, now a
senior scientist and professor at the University of Potsdam, participated from
the get-go with Hans and his colleague Bjorn. At the time, she was a mid-career
professor at the University of Leeds, smoked cigarettes like a chimney, and a
no-nonsense scientist. Pan Conrad, a more recent PhD, but of similar age to me,
has a flair for the dramatic, a background in classical opera, and a wicked
sense of humor. I filled the role as “senior lady”, an ecologist and life
scientist, and “mother” of all onboard. We “Babes of Science” were usually
listened to and generally respected, which was important in the male-dominated
culture on AMASE.
After our meeting, we piled down to the
“day room” where Hans outlined the daily plan and decided who was going where,
with whom, and when. Steelie served as
Chief Scientist once we received NASA funding. Typically, there were two to
three teams going to places for science sampling, discovery, or instrument
testing. Each team was assigned a safety person, who was Hans, Ivar, or one of
us who had successfully shown we could hit a target with a rifle. The AMASE
photographer Kjell Ove was assigned to one of the teams. After this brief
meeting, we scrambled to our labs loading our daypacks with supplies, making
sure we had sufficient warm clothing for all types of weather. We packed a
lunch, hot tea or cocoa, and assembled on deck with our survival suits on,
ready to board a small boat heading to shore. Once on shore, we unzipped the
bulky orange suits, put on our boots, checked our rifles, radios, and flare
guns, shouldered our packs and set off.
Because of the eternal daylight, teams
often stayed out for 12 or more hours if the field area was remote or if we
were conducting timed sampling or difficult measurements. Most often, teams
called for pickup around 6 pm, in time to stow samples on board ship, and
change for dinner. Depending on the cook, dinners were a highlight of the day.
Before embarking from Longyearbyen, we had all stopped off at the liquor store
and packed in wine, beer, and the occasional bottle of gin or aquavit. Generous
“senior” scientists often brought a bottle of red wine to the dinner table to
share. We discussed the day’s exciting discoveries, commiserated over broken
instrumentation, and argued about all sorts of topics in astrobiology, space
science, and NASA-European Space Agency relationships.
After dinner, everyone went to their
labs and began evening analytical sessions. I extracted nutrients from rocks
with chemical solutions, measured their concentrations, labeled and dried
samples, wrote more detailed field notes, uploaded data to my computer and
graphed it, and thought about the next day’s work. Others tweaked their
instruments, fixed broken power supplies or cables, took spectra, and wandered
between labs sharing samples and ideas. By about 11 pm, some called it a day
and went to bed, others assembled on the deck with another beer, or headed to
the upper deck to bask in the makeshift hot tub on the R/V Lance, the ship we took
out after 2005. It was a tricky time of day. When Norwegians take the cap off a
whiskey bottle, they typically throw it out, meaning that the bottle is passed
around until it’s empty. Sometimes it was a challenge to keep things “between
the navigational beacons” so to speak. What happens in Svalbard stays in
Svalbard.
Every year new people joined the AMASE
team and were “treated” to a series of fun and demanding challenges, some of
which could have been considered hazing. My first year, several of us were
locked into cages designed for lifting equipment into the hold of the ship. We
also had to write the lyrics to songs, create a play for presentation, and make
fun of the “old timers.” In 2005, my second year, Liane Benning and Verena
Starke invented my role as Queen Thora, a mythical Norse Queen who ruled the
Arctic. The AMASE crew was assembled on the deck of the ship and I entered with
a retinue, and read some cryptic Norwegian passages, which put the native
speakers in stiches with my lousy pronunciation. I then gave the orders for the
newbies and the schedule they had to adhere to. When I wasn’t on the
expedition, Dave Blake took over this role as Father Dave, a stern, but
hilarious “priest” giving penances to the flock.
Science Targets
Target areas for investigation were set
before each year’s expedition. For the instrument engineers, there is every
landform and slope imaginable, often within easy walking distance from shore.
With many rock types, cold weather, and remote electronic access, the Svalbard
environment put lab-designed instruments to a realistic test. All of the team
was intrigued by the presence of glaciers, permafrost, Arctic rivers, and sea
ice. The polar regions of Mars contain water ice year round. Learning how to
look for signs of life in snow and ice became a major focus in subsequent
years. Svalbard is cold enough to contain ice caps, laminated ice that has
existed for hundreds if not thousands of years. Two geothermal environments,
Troll and Jotun Springs, are the most northern thermal features on land. Troll
Springs built significant calcium carbonate (travertine) deposits forming
terraces that extended over several hundred meters. All of these features were within a distance
from our ship that allowed for relatively easy sampling and collection of
specimens as well as field deployment of instruments.
In 2004, our first sample site was the
Bockfjord Volcanic Complex (BVC) including Sverrefjellet volcano, which rose up
from sea level to over 500 meters. Vertical lava pipes, some of which are
filled with unusual magnesium-iron types of carbonate minerals, are relatively
rare on Earth. These rare mineral forms were cemented into lava rocks and were
part of the draw to go to this remote area. Previously, Hans and Allen Treiman
(Lunar Planetary Science Institute) found these rare carbonate minerals in the
form of small globules on Sverrefjellet volcano (Amundsen, 1987). The
globule-like mineral’s form is nearly identical in appearance to similar
minerals in the martian meteorite ALH84001—the famous martian meteorite reportedly
harboring extraterrestrial life. Work in 2003 hinted that there was microbial
activity on the layered magnesium carbonate coatings on the BVC lava conduit
walls. Our stable isotope data suggested that the coatings were deposited from
low temperature glacial melt-water, and not by the action of microbes.
Across the inlet from the BVC were the
high, steep Devonian red beds that looked strikingly like the iron-rich red
rocks of Mars. Although these weren’t as satisfying geologically to us, they
cast a certain spell when you climbed these mountains letting you easily
imagine you were walking on the surface of Mars itself. One year, postdoc
researcher Jake Maule borrowed a prototype space suit and roved through the redbeds
reminiscent of Armstrong’s first moonwalk in 1969.
Microbial Life in Svalbard
It is generally presumed that if we are
able to detect life on another planetary body, it will most likely be similar
to our simplest forms of life--the microbes. Therefore, NASA concentrates on
looking for microscopic signs of life and that is basically how we searched for
“signs of life” during the 2004 AMASE trip as we sampled along the flanks and
waters of Jotun Hot Springs. On the travertine terrace, several tens of meters
high, the water from three spring outflows had temperatures around 30°C. At
each outflow, a small pool 1 to 5 centimeters deep supported a dense covering
of microbes and algae, green in color, and often filamentous. As the effluents
passed down the travertine slope, they cooled and were replaced by larger
filamentous organisms and diatoms. I was drawn to study the thermophiles there
and the scene brought back great memories of fieldwork in Yellowstone National
Park. Now working with the Carnegie and JPL groups, we developed a completely
different sampling and strategy plan.
We took a step “backwards” so to speak
and walked away to refrain from immediately collecting the obvious organisms in
the springs and devised a coordinated sampling plan on the terraces adjacent to
the springs hoping that they would present a greater life detection challenge.
The Carnegie team was determining the microbial composition and biomass using
field-based PCR and an ATP-based instrument that used an extract from the horseshoe
crab to find microbes. My task was to measure inorganic nitrogen compounds
extracted from these samples as well as to determine the absorption spectrum of
microbial pigments.
The JPL group was testing a ultraviolet
(UV)-fluorescence prototype instrument. We argued for several hours on the
outcrop before taking the first sample and making measurements. The
microbiology group sampled first so as to avoid contamination that could come
from our activities. I sampled next,
since my sampling was simple: a scoop of rock powder adjacent to the
microbiology sample. Last came the UV-fluorescence team who took their time
troubleshooting their instrument along the way. They encountered numerous
problems including computer screens that literally froze, telephone type cable
connections that shrank in the cold and made no contact, and light
contamination from sunlight.
![]() |
2004 microbe sampling crew, Jotun Springs |
Nitrogen concentrations in travertine
samples were more than three times greater than volcanic rocks nearby. In water
collected downstream from the springs’ sources, nitrogen concentrations
indicated a type of microbial metabolism called nitrification in which the
compound ammonium is converted to nitrate by specialized microbes. Pigments
indicated there were traces of chlorophyll, the green pigment in plants. In
many samples, light absorption in the near ultra-violet range indicated the
presence of the scytonemin, a microbial pigment synthesized to protect
organisms from UV damage. The absorption bands were especially strong in what
we called “black” and “white” sediments taken adjacent to the springs.
Back in the lab at the Carnegie, I
analyzed total nitrogen as well as the carbon and nitrogen isotope
biosignatures of the organic matter of these samples. The isotope patterns of
carbon and nitrogen in biomass and rock samples from Jotun Springs varied over
short distances reflecting the activity of living microbes in effluent waters.
If there had been no microbial activity, I would have found uniform isotope
patterns. Based on the carbon signatures of microbes, we surmised that the
concentration of dissolved CO2 coming from the hot spring sources must
be high. Again, if we were measuring the carbon signals of abiogenically
derived organic carbon, we would expect the patterns to be much more uniform.
On Earth, it is virtually impossible to
find anything that is not slightly contaminated with organic carbon. Even
pristine aluminum foil, for example, has a thin layer of oil on it from the
manufacturing process. We geochemists call this ubiquitous carbon--“background”
carbon. When we measure the isotope composition of this “background” carbon it
is almost the same the world over and looks very similar to the carbon
signature of oil. I concluded that based
on changes in nutrient concentrations over the spatial extent near the springs,
elevated concentrations relative to igneous rocks, the absorption of light by pigments, and the
variable isotopic compositions, these represented biosignatures of life in
these samples.
Over the years we made many trips to
the other thermal area called Troll Springs, which are located about 6
kilometers from the shoreline. The hike there circumnavigated Sverrefjellet
Volcano and crossed a marshy area where we had to step on clumps of moss to
prevent sinking in quicksand, before reaching a rushing, cold Arctic river
about 100 meters wide. There were few comfortable or safe options for crossing
the river. Option one, encase your hiking boots in trash bags and run quickly
through the water, hoping the bags stayed on your boots. Option two, put the
trash bags over your feet, then back in your boots. Wade more surely through
the river channel, but you’ll have wet boots on the other side. Option 3, run
as fast and as fleet as you can and hope that your boots remain as dry as possible.
All three options generally resulted in cold feet and wet boots. Having a dry
set of socks in your backpack was a good idea.
Troll Springs spread out on the
landscape for about 500 m. Some of the springs had dried completely, while
others pumped out fluids at full blast. Those with active flow supported
robust communities of microorganisms. In 2004, we discovered a relatively small
area at Troll Springs littered with hundreds of small bird bones. Upon closer
inspection, we realized the bones were clustered around an Arctic fox den,
which was situated on the side of a dormant spring where the soil was warmed
year round. Immediately, I collected bones and soils from around the den.
During repeated trips to Troll Springs
over the next five years, it appeared that a fox inhabited this den
continuously. Based on the isotopic composition of the soils, the fox’s
“influence” on the landscape through its feeding and excreting activities
extended 60 meters outwards from its den. Plants growing on those soils had
distinctive isotope values for both carbon and nitrogen that showed
“fertilization” from the fox’s prey caught on the shorelines. Isotopic analyses
of the small bones from birds showed the fox ate both terrestrial (e.g.,
ptarmigan) and marine birds. About 80% of the bones were from marine seabirds,
such as kittiwakes. That wiley fox was responsible for bringing nutrients from
the ocean into a nutrient-starved terrestrial environment creating a green “hot
spot” that could be seen from some distance. Although “foxes on Mars” is a
ridiculous notion in itself, this discovery was a robust example of how
biological processes of organisms can physically and chemically alter the
landscape in which they lived.
Phase 2: Astrobiology Science and Technology for Exploring Planets
By the 2006 expedition, the priority
for AMASE trips shifted towards testing new instruments in the field prior to
their being selected for space flight on upcoming Mars missions. Each year we
worked with a JPL crew that brought along a sophisticated rover that was put to
the test on slopes and terrains similar to those found on Mars. JPL scientists
took turns operating the Cliff-Bot rover. This team was given 2-3 days of
special time to test their rover. Many of us envisioned the rover swiftly
covering the landscape in a matter of minutes, reaching out its robotic arm,
scooping up sediment and returning faithfully to its base. Unfortunately,
sending a rover over a complex landscape, as though it were on a remote
planetary body, was a much slower, hour-by-hour and inch-by-inch process that
tested the patience of many a crewmember.
![]() |
The rover team at Jotun Springs |
The project now included two
instruments that were ultimately chosen to fly on Mars Curiosity: CheMin and
SAM (Sample Analysis on Mars). CheMin is a miniaturized instrument for determining
the structure and composition of minerals in a rock or soil sample. Today,
CheMin is on Mars and has been busy and successfully analyzing martian mineral
samples on the Curiosity rover. CheMin’s Principle Investigator and inventor is
David Blake, a scientist at NASA Ames. Blake, a US Navy veteran and an expert
in designing and testing field X-ray mineralogy instruments, is also quite a
character. Dave sang Navy songs laced with profanity, told jokes and funny
stories of all types, and laughed with a distinct pirate-like “Har har.” To say
he brought some “color” to the expeditions is an understatement. SAM’s PI,
Paul Mahaffey, brought a crew of scientists from NASA Goddard. SAM is a
combination gas chromatograph-mass spectrometer (GC-MS) equipped with the
capability of high temperature pyrolysis GC-MS and a tunable diode laser for
measuring methane and its isotopic composition. CheMin was fully portable and
field deployable; SAM was not.
In addition to instrument teams, Steven
Squyres, the PI of the Mars Exploration Rover mission with Opportunity and
Spirit, was invited to observe sampling in the field and to conduct mock Mars
sampling exercises (Science Operations Working Group: SOWG--pronounced “Sahg”)
based on his experience “roving Mars” from Earth. Squyres was our most “famous”
AMASE participant. We were a bit in awe to first meet him, but he quickly
adapted to the informal, give-and-take atmosphere of discovery that was AMASE.
Steve is a rail thin guy who likes to climb ice mountains in winter and must
have the metabolism of a bird. Dressed in black track jacket and jeans with his
head wrapped in a red printed bandana, Squyres led the SWOG sessions seriously.
He also had the chance to participate in active fieldwork, where he was often a
fish out of water so to speak, since he is a space and planetary scientist with
little training in biology. He
particularly enjoyed helping out Verena Starke with her work and sampling at
Troll Springs.
![]() |
Dave Black (center) with CheMin on board ship with Fernando and Ivar |
The SWOG exercises were designed so
that scientists and engineers, required to work together in teams during real
missions, would learn as a group how to conduct Mars science from Earth. The question of how to access suitable samples had to be tackled
separately with specialized practice with the rover team. Our second
question--how to identify, sample and detect molecules of interest at suitable
spatial and detection sensitivity scales?-- took up most of our time.
For many of the last AMASE expeditions,
about three SOWG exercises were held each expedition in later years. AMASE photographers
took panoramic photos of rock outcrops that were sent back to the team “on
Earth”--meaning inside a room on the ship--for them to analyze. Those on board
ship were assigned to Mars instrument teams. Each team was assigned an energy
budget. For each measurement requested, the team needed to use up one or more
of its energy allotments to “pay” for the analyses. This would mimic the
limited energy resources available on the Rover on Mars. Teams practiced making
the best use of the energy resources available each martian day, which is
called a “sol” because it is slightly longer than an Earth “day”.
After the teams finished arguing about
where on the outcrop the samples should be taken and how they would use their
precious energy resources, the crew on land sampled the outcrop with hammers
and delivered the samples to the instruments. When the analyses were completed,
data were “downlinked” from “Mars” to “Earth” for inspection and analysis. At
this point, teams argued whether they were able to detect molecules of life on
“Mars.”
These exercises were intense: periods
of high drama and discussion, followed by periods of restless inactivity,
cooped up on the ship or lounging on a rock outcrop. All samples were brought
back to the ship and analyzed by the full AMASE crew with a summary report for
each SOWG exercise. As ASTEP funding and matching European Space Agency funding
neared completion in 2010, AMASE entered a period of uncertainty, in particular
about its focus on discovery-based science versus technology testing. Folks
like Blake and Mahaffey needed to turn their attention completely to Mars
Science Laboratory, the mission to Mars that landed the rover, Curiosity. The
yearly, international expeditions with Hans, ESA and NASA collaborators, and
Carnegie scientists ended anticlimactically.
![]() |
Polar bear eating a seal instead of us! |
Insights into Teamwork and Collaboration
AMASE began as a small, tight-knit
group of scientists, artists, and PR people from around the world. Hans
Amundsen had the vision to create AMASE and managed it peacefully for many
years. When we received NASA funding with Steelie as Principal Investigator,
the dynamic changed. Hans became Expedition Leader, and Steelie, Chief
Scientist. The management team met every year in either the U.S. or Europe to
plan the next year’s expedition. We loved each other. Steelie and Hans were
like brothers. We developed Rules of the Road assuring that we were “One for
All, and All for One.”
Things changed when some groups had
better success and followed through with abstracts to international conferences
and drafts of manuscripts. A few of the scientists never shared their data for
one reason or another. Whether this was fear of not getting funded or scooping
one instrument team versus another is not clear. By 2009, the team had seemed
to me to be falling apart. There were those people who were seasoned Arctic
veterans and those that weren’t hardy Arctic explorers. I was never sure at
this point in time where I lay. Money and funding, press coverage, and
relationships with NASA and ESA often seemed to be more important than science
and collaboration. The last AMASE in which Carnegie folks participated ended on
a disappointing note. I was glad that I did not join that year.
The strong personal bonds built in 2003
had been reduced to thin threads. Communication was strained. I felt sad to
hear of the troubles between individuals and groups. This was one of my
favorite endeavors of my career, some of my very favorite colleagues. We gently
parted ways. Hans and Steelie entered a silent truce. NASA’s Mars Science Lab
with its rover Curiosity launched and the instrument folks and engineers
shifted their efforts there. Where did things go wrong?
Hans and Steelie have strong
personalities, sizeable egos, and direct visions of where they want to take
their lives. Amazingly (or AMASEingly), their personalities, egos, and visions
intersected for a time producing the success of AMASE. As their visions
diverged, the personalities (and egos) could not sustain the collaboration.
While I remain close to Steelie--often we say as science brother and sister--I
am no longer in direct contact with Hans about what we discovered that still
needs to be published. Nearly ten years after the last official AMASE, I recall
those great moments of seeing walruses and polar bears in the wild, the thrill
of fording an Arctic river, and hiking across glaciers.
Did we accomplish what set out to do?
Yes. AMASE contributed significantly to the training of scientists and engineers
currently involved in active Mars science and in planning Mars 2020. Paul
Mahaffey, SAM’s principal investigator, brought an international team of
younger scientists with him, some of whom were very field savvy and others who
had little experience picking up a sample and analyzing it. This talented group
cut their analytical teeth in funky labs on the R/V Lance using a primitive
prototype of SAM. The experience surely has contributed to the overwhelming
success of this team with its dozens of Science
and Nature papers from the
“Curiosity” rover.
Although a different rover came on
AMASE, the rover engineering team from JPL had to learn what their system would
do under much more challenging conditions than they had previously experienced.
As observers, the rest of the AMASE group watched this team struggle and
overcome personal differences in style and talent. All of them continue at JPL,
driving rovers on Mars. Blake’s CheMin team sashayed into Svalbard with a
strong prototype and a coordinated team. They left with a stronger idea as to
how their instrument could integrate with the search for life. Their work
remains a cornerstone of Curiosity.
Students were trained and postdocs
tested. They learned to trust themselves in a remote, hostile environment and
to get along on the tight quarters of a research vessel. I think it’s fair to
say that they will never go on a better field expedition than AMASE in their
lifetime—unless they make the trip to Mars. Further, they rubbed shoulders with
the movers and shakers of astrobiology, exchanging ideas, working out problems.
There is no better way to engage and retrain young scientists than a voyage
like this.
No comments:
Post a Comment